导 读
紫外(UV)是饮用水处理中常用消毒方式之一,因具有良好的杀菌灭活效率,消毒过程不产生“三致”毒性消毒副产物,近年来在国内外自来水厂得到广泛应用。基于紫外的高 级氧化技术已成为当前水处理领域研究的热点前沿,且被证实在氧化杀菌和强化有机污染物去除方面具有突出效果。当前水厂常用紫外光源为低压和中压紫外汞灯,存在光照剂量不足和波长不匹配等问题,限制了紫外高 级氧化等新技术在实际工程中的推广应用。本文借助光学领域的最新发展成果,提出了基于复合波长紫外发光二极管(UV-LED)和集束型高光强紫外激光(UV-Laser)的新型高 级氧化反应体系,为紫外高 级氧化在实际应用过程中面临的自由基产率低、有机污染物去除不彻底和消毒副产物产生风险高等问题提供了新的解决思路(如图1)。
(a: UV-LED;b: UV-Laser)
图1 新型紫外光源
图2 波长和pH对UV/氯高 级氧化降解有机物的影响机制
2.2 复合波长叠加强化污染物去除并控制副产物生成风险
由于UV/氯高 级氧化技术会产生活性氯自由基,在降解有机物过程中存在较高卤代消毒副产物生成风险,这也是该技术一大局限。考虑到UV-LED存在不同波长的灯珠,可实现自由搭配组合,同时不同波长照射下的自由基种类和产率也存在差异。因此,本研究提出了基于复合波长叠加的UV-LED/氯高 级氧化新方案。研究中试验了265nm和280nm UV-LED的叠加方案,发现同等紫外剂量下,265+280nm UV-LED/氯高 级氧化对目标污染物碘帕醇的去除速率明显快于两种单波长体系下去除速率的理论之和,具有明显的波长叠加协同促进效应。而且双波长叠加降解碘帕醇过程中生成的碘代三卤甲烷副产物,尽管略高于280nm单波长体系(该波长下目标污染物降解效果差),但显著低于265nm单波长体系。综合来看,265+280nm双波长叠加UV-LED/氯高 级氧化技术,对于碘帕醇高效降解和碘代副产物生成控制具有良好效果。
图3 基于复合波长叠加的UV-LED/氯高 级氧化对碘帕醇的去除及碘代副产物生成控制
3 新型紫外激光/过硫酸盐高 级氧化技术
3.1 集束型高光强紫外激光对自由基产率的提升作用
紫外激光(UV-Laser)是一种单波长新型紫外光源,与其他低压、中压紫外汞灯及UV-LED光源不同的是,UV-Laser是一种集束型的点状光源,与水的接触面积较小,但能量集中,能在局部区域产生较高光强,在高 级氧化体系中能激发产生更多自由基。如本研究采用266nm深紫外激光器激发过硫酸盐(PS)时,在控制相同紫外剂量和PS浓度条件下,集束型紫外光束较扩散型光束,硫酸根自由基(SO4-·)和羟基自由基(·OH)稳态浓度均有大幅提升。在集束型UV-Laser/PS高 级氧化体系中,双酚A等目标污染物可实现秒级降解和矿化(如图4所示)。此外,UV-Laser/PS应用时,反应容器过小的深径比(h/D)不利于光线的接触反应,而h/D过大时局部产生的大量自由基难以及时扩散,易发生自淬灭反应,与目标污染物接触反应机率降低,因此UV-Laser光线的入射方式与反应容器适配性是关系该种新型光源能否高效应用的关键影响因素,值得深入探究。
图4 266nm UV-Laser/PS对自由基产率的提升及对目标污染物双酚A的快速降解
与传统低压紫外(LPUV)/PS体系相比,集束型高光强UV-Laser/PS降解某些有机污染物过程中,会产生具有特征官能团结构的电子穿梭物质,提升氧化还原反应速率,加快目标污染物降解。如本研究在降解目标污染物碘海醇过程中,发现UV-Laser/PS体系的氧化还原活性明显更强,产生的中间产物中存在多种电子穿梭物质。在相同紫外剂量和PS投加量条件下,UV-Laser/PS体系比LPUV/PS体系对目标污染物碘海醇的矿化率有明显提升,且降解后的溶液碘代消毒副产物生成潜能也大幅降低(如图5所示)。
图5 UV-Laser/PS降解碘海醇过程中的电子穿梭效应及其对污染物矿化提升和碘代消毒副产物生成潜能的削减作用
4 技术应用前景
紫外高 级氧化技术在实际饮用水处理工程应用中存在诸多技术瓶颈,新型UV-LED光源的科学应用,有望克服当前紫外波长不匹配和不可调控导致的自由基产率低的难题,且UV-LED独特的外形设计,也为新型紫外反应器的研发和应用提供了广阔空间。而具有高能量和集束光线特征的UV-Laser光源在水处理高 级氧化中的应用,对于实现难降解有机污染物的快速去除和矿化提供了良好的解决思路,随着激光技术的飞速发展和成本的降低,基于复合波长和高能深紫外激光器的新型紫外高 级氧化技术将是未来的重要发展方向。